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Abstract
We solve the dynamics of the on-line minority game (MG), with general types
of decision noise, using generating functional techniques a la De Dominicis
and the temporal regularization procedure of Bedeaux et al. The result is a
macroscopic dynamical theory in the form of closed equations for correlation
and response functions defined via an effective continuous-time single-trader
process, which are exact in both the ergodic and in the non-ergodic regime
of the MG. Our solution also explains why, although one cannot formally
truncate the Kramers–Moyal expansion of the process after the Fokker–Planck
term, upon doing so one still finds the correct solution, that the previously
proposed diffusion matrices for the Fokker–Planck term are incomplete, and
how previously proposed approximations of the market volatility can be traced
back to ergodicity assumptions.

PACS numbers: 02.50.Le, 87.23.Ge, 05.70.Ln, 64.60.Ht

1. Introduction

The minority game (MG) [1] is an intriguing variation on the so-called El-Farol bar problem [2]
which aims to capture and understand in the simplest possible way the cooperative phenomena
in markets of interacting traders. Its equations describe the stochastic evolution in time of
the selection of individual ‘trading strategies’ by a community of traders which operate in a
simple market. The rules of this market are that each trader has to make a binary decision at
every point in time (e.g. whether to buy or sell), and that profit is made only by those traders
who find themselves in the minority group (i.e. who find themselves buying when most wish
to sell, or vice versa). The essence of the MG is that each trader individually wishes to make
profit, but that the net effect of his/her trading actions is defined fully in terms of (or relative
to) the actions taken by the other traders, and that there is a high degree of frustration since it is
impossible for all traders to be successful at the same time. In spite of its apparent simplicity,
the MG has been found to exhibit non-trivial behaviour (e.g. phase transitions separating an
ergodic from a highly non-ergodic regime) and to pose a considerable challenge to the theorist.
Its (stochastic) equations do not obey detailed balance, so there is no equilibrium state, and
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understanding the model properly inevitably requires solving its dynamics. An overview of
the literature on the MG and its many variations and extensions can be found in [3].

In the original MG, the information supplied to the agents upon which to base their
trading decisions consisted of the history of the market. However, it was realized [4] that the
dynamics of the MG remains largely unaltered if, instead of the true history of the market,
random information is supplied to the agents; given α (the relative number of possible values
for the external information), the only relevant condition is that all agents must be given the
same information (whether sensible or otherwise). This led to a considerable simplification of
theoretical approaches to the MG, since it reduced the process to a Markovian one. In [5] it
was shown that the relevant quantities studied in the MG can be scaled such that they become
independent of the number of agents N when this number becomes very large, opening up the
possibility to use statistical mechanical tools. An interesting generalization of the game was
the introduction of agents’ decision noise [6], which was shown not only to improve worse
than random behaviour but also, more surprisingly, to be able to make it better than random1.
The studies [6] and [10] finally paved the way for a number of papers aiming to develop a
solvable statistical mechanical theory.

Early theoretical attempts focused on using additive decision noise to regularize the
microscopic stochastic laws and derive deterministic (nonlinear) continuous-time equations,
which minimized a Lyapunov function [11, 12]. This approach was remarkably successful
in identifying the location of a phase transition and in describing correctly some aspects of
the behaviour of the MG above this phase transition. However, it became clear later that
the deterministic equations were only approximate, even for N → ∞ (since they neglected
relevant fluctuations). This initiated a debate about how to construct exact continuous-time
microscopic laws for the MG [13–17], in which all participants restricted themselves to either
deterministic or Fokker–Planck equations (some dealing with both additive and multiplicative
decision noise [15]) but without agreeing on the expression to be used for the diffusion matrix,
and all involving different types of approximations already at the microscopic level. Finally,
in [20,21] the problems relating to the continuous-time limit were circumvented by redefining
the equations at the microscopic level directly in terms of full averages over all possible values
of the external information, and the dynamics of the resulting so-called ‘batch MG’ was solved
exactly using generating functional methods [19] (first without decision noise [20], then also
for general types of decision noise [21]).

In this paper we solve the dynamics of the original (on-line) MG, along the lines
of [20, 21] (i.e. using generating functional techniques). We show how the problems and
uncertainties relating to temporal regularization, which appear to have been responsible for
generating the debates and approximations surrounding the proper form of the continuous-
time microscopic laws, can be solved and resolved in an elegant and transparent way by
using the (exact) procedure of [18] for deriving a continuous-time master equation without
using the thermodynamic limit. This allows us to write down the full stochastic microscopic
equations (without truncation or approximation) and solve the model by adapting to the present
continuous-time (on-line) process the generating functional techniques which were employed
successfully for the discrete-time (batch) process in [20, 21]. The end result is an exact
dynamical macroscopic theory, for general types of decision noise (additive, multiplicative,
etc), in the form of closed equations for correlation and response functions which are defined via
an effective single-trader process, from which the statics follows as a spin-off. Our equations
describe both the ergodic and the non-ergodic regime of the MG, including transients.

1 Using a phenomenological theory for the volatility, based on so-called ‘crowd–anticrowd’ cancellations [7], this
effect was partially explained in [8, 9].
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The full exact dynamical solution now available also allows us to make rigorous
retrospective statements about the validity or otherwise of the various approximations proposed
in the past, and to explain under which conditions such approximations could indeed have
led to correct results. More specifically, we (i) show why it is in principle not allowed to
truncate the Kramers–Moyal expansion of the microscopic process after the Fokker–Planck
term (let alone after the flow term), but why upon doing so one can still find the correct
macroscopic equations (for the present version of the MG), (ii) confirm that the different
diffusion matrices for the Fokker–Planck term in the process, as proposed earlier by others,
are incomplete or approximate, and (iii) indicate how previously proposed approximations
involving the market volatility can be traced back to assumptions relating to ergodicity (and
are thus valid at most in the ergodic regime).

2. Definitions

2.1. The minority game

The MG describes the dynamics of decision making by N interacting trading agents, labelled
with Roman indices. At each round � of the game, each agent i has to take a binary trading
decision si(�) ∈ {−1, 1} (e.g. whether to sell or buy). At each round all agents are given the
same external information Iµ(�) (representing, for example, the overall state of the market,
political or economic developments, etc), which here is chosen randomly and independently
from a total numberp = αN of possible values, i.e.µ(�) ∈ {1, . . . , αN} for each �. To generate
trading decisions, each agent i has S fixed strategies Ria = (R1

ia, . . . , R
αN
ia ) ∈ {−1, 1}αN at

his/her disposal, with a ∈ {1, . . . , S}. These strategies act as manuals (or look-up tables)
for decision making: if strategy a is being used by agent i at stage � in the game, then
the observation of external information µ(�) will trigger this particular agent into taking the
trading decision si(�) = R

µ(�)

ia . Hence the intrinsic dynamics of the MG is not driven by the
decision variables si(�), but by the dynamic selection by each trader of trading strategies from
his/her available arsenal, as described below. Each component Rµ

ia is assumed to have been
drawn randomly and independently from {−1, 1} before the start of the game, with uniform
probabilities. The strategies thus introduce quenched disorder into the game.

Given a choice µ(�) made at the start of round �, every agent i selects the strategy ãi (�)

which for trader i has the highest pay-off value at that point in time, i.e. ãi (�) = arg max pia(�),
and subsequently makes the binary bid bi(�) = R

µ(�)

iãi (�)
. The (re-scaled) total bid at stage �

is defined as A(�) = N−1/2 ∑
i bi(�). Next all agents update the pay-off values of each of

their strategies a on the basis of what would have happened if they had played that particular
strategy:

pia(� + 1) = pia(�) − η̃√
N

R
µ(�)

ia A(�). (1)

The constant η̃ represents an (optional) learning rate. Note that the agents all behave as price
takers, i.e. they do not take into account the impact of their own decisions on the total bid. We
here consider only the S = 2 model, where the equations can be simplified upon introducing
qi(�) = 1

2 [pi1(�)−pi2(�)],ωi = 1
2 [Ri1 +Ri2] and ξi = 1

2 [Ri1−Ri2]. As a result, the selected
strategy in round � can now be written asRiãi (�) = ωi + sgn [qi(�)]ξi , and the evolution of the
difference is given by

qi(� + 1) = qi(�) − η̃√
N

ξ
µ(�)

i

[
�µ(�) +

1√
N

∑
j

ξ
µ(�)

j sgn [qj (�)]

]
(2)

with Ω = N−1/2 ∑
j ωj ∈ R

αN .
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2.2. Minority game with decision noise

The process (2) can and has been generalized in order to include traders’ decision noise [6,11].
This can be done in many different ways; here we try to avoid being unnecessarily specific,
and choose a general definition where we replace (as in, e.g. [21])

sgn [qj (�)] → σ [qj (�), zj (�)] (3)

in which the zj (�) are independent and zero average random numbers, described by some
symmetric distribution P(z) which is normalised according to

∫
dz P (z) = ∫

dz P (z)z2 = 1.
The function σ [q, z] is parametrized by a control parameter T � 0 such that σ [q, z] ∈ {−1, 1},
with limT→0 σ [q, z] = sgn [q] and limT→∞

∫
dz P (z)σ [q, z] = 0, so that T can be interpreted

as a measure of the degree of stochasticity in the traders’ decision making. Typical examples
are additive and multiplicative noise definitions such as

additive: σ [q, z] = sgn [q + T z] (4)

multiplicative: σ [q, z] = sgn [q] sgn [1 + T z]. (5)

In the first case (4) the noise has the potential to be overruled by the so-called ‘frozen’ agents,
which have qi(t) ∼ q̃i t for t → ∞ (see [20]). In the second case the decision noise will even
retain its effect for ‘frozen’ agents (if they exist). These definitions represent situations where
for T > 0 a trader need not always use his/her ‘best’ strategy; for T → 0 we revert back to the
process (2). The impact of the multiplicative noise (5) can be characterized by the monotonic
function

λ(T ) =
∫

dz P (z) sgn [1 + T z] (6)

with λ(0) = 1 and λ(∞) = 0. For e.g. a Gaussian P(z) one has λ(T ) = erf [1/
√

2T ]. We
now find (2) being replaced by

qi(� + 1) = qi(�) − η̃√
N

ξ
µ(�)

i Aµ(�)[q(�), z(�)]. (7)

In this expression the quantity Aµ[q, z] denotes the bid which would result upon presentation
of information µ, given the microscopic state q of the system and given realization z of the
decision noise:

Aµ[q, z] = �µ +
1√
N

∑
j

ξ
µ

j σ [qj , zj ]. (8)

3. Microscopic probabilistic description

3.1. Temporal regularization using the procedure of Bedeaux et al

We convert the discrete-time on-line stochastic process (1) into an explicit Markovian
description in terms of probability densities. For the present noisy version of the game one
finds a microscopic transition probability density operator W(q|q′) which involves an average
over the random numbers {zi}, indicated by 〈. . .〉z:

p�+1(q) =
∫

dq′ W(q|q′)p�(q
′) (9)

W(q|q′) = 1

p

p∑
µ=1

〈∏
i

δ

[
qi − q ′

i +
η̃√
N

ξ
µ

i Aµ[q′, z]

]〉
z

. (10)
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In order to carry out systematically the temporal coarse-graining and transform the dynamics
to an appropriately re-scaled continuous time t , we follow the systematic procedure of [18]
and define the duration of each of the iteration steps to be a continuous random number, the
statistics of which are described by the probability π�(t) that at time t precisely � updates have
been made. Our new process (including the randomness in step duration) is described by

pt(q) =
∑
��0

π�(t)p�(q) =
∑
��0

π�(t)

∫
dq′ W�(q|q′)p0(q

′)

and time has become continuous. For π�(t) we make the Poisson choice π�(t) =
1
�! (t/"N)�e−t/"N . From 〈�〉π = t/"N and 〈�2〉π = t/"N + t2/"2

N it follows that "N is
the average duration of an iteration step, and that the relative deviation in � at a given t

vanishes for "N → 0 as
√〈�2〉π − 〈�〉2

π/〈�〉π = √
"N/t . This introduction of random step

durations thus only introduces uncertainty about where we are on the time axis, which will
vanish at the end of the calculation, provided we ensure limN→∞ "N = 0. The properties of
the Poisson distribution under temporal derivation lead to

d

dt
pt (q) = 1

"N

{∫
dq′ W(q|q′)pt (q

′) − pt(q)

}
. (11)

3.2. Canonical temporal coarse graining

To find the appropriate scaling with N of "N (and investigate the relation with the Fokker–
Planck approximations of [15] and [17] in a subsequent section) it is instructive to expand the
master equation (11) in powers of the learning rate:

d

dt
pt (q) = 1

"Np

p∑
µ=1

∫
dq′ pt(q

′)
〈
δ

(
q − q′ +

η̃√
N
ξµAµ[q′, z]

)
− δ(q − q′)

〉
z

=
∑
��1

[L� pt ] (q) (12)

with

[L� p] (q) = η̃�

N�/2

∑
n1,...,nN�0

δ�,
∑

i ni

n1! . . . nN !

∂�

∂q
n1
1 . . . ∂q

nN

N

×
{
p(q)

[
1

"Np

p∑
µ=1

(ξ
µ

1 )n1. . . (ξ
µ

N)nN 〈Aµ[q, z]�〉z
]}

. (13)

From the � = 1 term in this so-called Kramers–Moyal expansion one reads off the canonical
scaling for the temporal coarse-graining timescale "N (in order to guarantee a proper N → ∞
limit):

[L1 p] (q) = η̃

α"NN

∑
i

∂

∂qi

{
p(q)

[
ξi · Ω√

N
+

1

N

∑
j

ξi · ξj 〈σ [qj , z]〉z
]}

.

We are automatically led to the choice "N = O(η̃/N) (this gives, for T = 0 and for
N → ∞, as our first term exactly the batch dynamics studied in [20]), and we must require
limN→∞ η̃/N = 0 in order to guarantee limN→∞ "N = 0. We now put

"N = η̃/2αN (14)
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(thereby en passant absorbing an additional distracting factor 2α, to find simpler equations
later) and find the various terms (13) in the Kramers–Moyal expansion (12) reducing to

[L� p] (q) = 2η̃�−1

N
1
2 (�−1)

∑
n1,...,nN�0

δ�,
∑

i ni

n1! . . . nN !

∂�

∂q
n1
1 . . . ∂q

nN

N

×
{
p(q)

[
1√
N

p∑
µ=1

(ξ
µ

1 )n1. . . (ξ
µ

N)nN 〈Aµ[q, z]�〉z
]}

. (15)

Note that, according to (14), the present canonical definition of the time unit t implies temporal
coarse-graining over O(1/"N) = O(N/η̃) iteration steps.

3.3. Canonical scaling of the learning rate

The remaining freedom one has is in the choice of the learning rate η̃. In order to find the
appropriate choice(s) for the scaling with N of η̃ we work out the temporal derivatives of the
probability density Pk(q) = 〈δ[q − qk]〉 of individual components of the microscopic state
vector, where 〈f (q)〉 = ∫

dq p(q)f (q) (via integration by parts in the various terms of (12)):

d

dt
Pk(q) =

∑
��1

2η̃�−1

N�/2�!

∂�

∂q�

〈
δ[q − qk]

p∑
µ=1

(ξ
µ

k )�〈Aµ[q, z]�〉z
〉

= ∂

∂q

〈
2δ[q − qk]

[
ξk · Ω√

N
+

1

N

∑
j

ξk · ξj 〈σ [qj , zj ]〉z
]〉

+η̃
∂2

∂q2

〈
δ[q − qk]

1

N

p∑
µ=1

〈[
ξ
µ

k Aµ[q, z]
]2 〉

z

〉
+
∑
�>2

O(N1− 1
2 �η̃�−1). (16)

We see explicitly that the diffusion term in this equation is of order O(η̃). Hence, in order to
prevent the system from being overruled by fluctuations we have to choose η̃ = O(N0) (with
the fluctuations in individual components vanishing altogether as soon as limN→∞ η̃ = 0).
Following [6, 11] and subsequent papers we choose η̃ to be a constant which is independent
of N in the remainder of this study. As a consequence we find that for N → ∞ the single-
trader equation (16) reduces to a Fokker–Planck equation, in agreement with [15] and [17]
(although, as we will show in a subsequent section, the diffusion matrices proposed in the
latter two studies are both approximations). This, however, does not necessarily imply that the
underlying N -agent process can also be described by a Fokker–Planck equation.

4. Properties of the Kramers–Moyal expansion

4.1. Relevance of higher orders

With the definitions "N = η̃/2p and η̃ = O(1) our full microscopic master equation (11)
becomes

d

dt
pt (q) = 2p

η̃

∫
dq′ pt(q

′)
{

1

p

p∑
µ=1

〈
δ

[
q − q′+

η̃√
N
ξµAµ[q′, z]

]〉
z

− δ(q′− q)

}
. (17)

The Kramers–Moyal expansion takes the final form

d

dt
pt (q) =

∑
��1

[L� pt ] (q) (18)
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where

[L�p] (q) = 2η̃�−1

N
1
2 �

∑
µ

∑
n1,...,nN�0

δ�,
∑

i ni

n1! . . . nN !
(ξ

µ

1 )n1. . . (ξ
µ

N)nN
∂�

∂q
n1
1 . . . ∂q

nN

N

{
p(q)〈Aµ[q, z]�〉z

}
(19)

or, equivalently,

[L�p] (q) = 2η̃�−1

�!

∑
µ

[
1√
N

∑
i

ξ
µ

i

∂

∂qi

]�{
p(q)〈Aµ[q, z]�〉z

}
. (20)

Although for N → ∞ the individual components of the state vector q were seen to have
Gaussian fluctuations (16), the cumulative effect on the dynamics of the higher-order (� > 2)
terms in the expansion (18) (including cross-correlations) cannot simply be neglected, since
also the number of components qi diverges with N . This can be seen more clearly in (20) than
in (19). If we work out the evolution of averages of observables f (q), via integration by parts,
we find that (18), (20) predict

η̃
d

dt
〈f 〉 = 2

∑
��1

(−η̃)�

�!

∑
µ

〈
〈Aµ[q, z]�〉z

[
1√
N

∑
i

ξ
µ

i

∂

∂qi

]�

f

〉
.

For simple mean-field observables such as f (q) = N−1 ∑
i ζiq

2m
i (with m independent of N )

one has
[

1√
N

∑
i ξ

µ

i
∂
∂qi

]�
f = O(N−�/2), and hence the � > 2 terms in the expansion are of

vanishing order. In contrast, for observables which are dominated by fluctuations, this need no
longer be the case. For instance, in the present system (with its overall reflection symmetry) one
has f (q) = 1√

N

∑
i ζiq

2m+1
i = O(N0); now

[
1√
N

∑
i ξ

µ

i
∂
∂qi

]�
f = O(N−(�−1)/2), and also the

� = 3 term could contribute to leading order. Moreover, there is no practical need to truncate
the expansion, since (as we will show below) within the generating functional formalism
it is perfectly natural to derive an analytical solution of the dynamics with all terms of the
Kramers–Moyal expansion included.

4.2. Explicit form of flow and diffusion terms

Let us now, by way of illustration, work out the first few terms of (20) for additive noise with
P(z) = 1

2K[1 − tanh 2(Kz)] (as in, e.g. [6,11], with K such that
∫

dz P (z)z2 = 1), for which
〈σ [q, z]〉z = tanh [βq] (β ≡ K/T ):

[L1 p] (q) =
∑
i

∂

∂qi

{
2p(q)

[
ξi · Ω√

N
+

1

N

∑
j

ξi · ξj tanh [βqj ]

]}
(21)

[L2 p] (q) = η̃
∑
ij

∂2

∂qi∂qj

{
p(q)

[
1

N

∑
µ

ξ
µ

i ξ
µ

j 〈Aµ[q, z]2〉z
]}

. (22)

Equation (22) describes, as expected, two types of fluctuations: [L2 p](q) =∑
k� ∂

2
k�

{
p(q)[MA

k� + MB
k�]

}
, one describing fluctuations induced by the randomly and

sequentially drawn external information:

MA
k� = η̃

N

p∑
µ=1

ξ
µ

k ξ
µ

�

(
�µ +

1√
N

∑
j

ξ
µ

j tanh [βqj ]

)2

(23)



10790 A C C Coolen and J A F Heimel

and a second one describing fluctuations induced by the decision noise2:

MB
k� = η̃

N2

p∑
µ=1

ξ
µ

k ξ
µ

�

∑
i

(ξ
µ

i )2(1 − tanh2[βqi]). (24)

The corresponding expressions for multiplicative noise are obtained by simply replacing
tanh [βqk] → λ(T )sgn [qk] in equations (21), (23), (24). For both noise types the second
contribution (24) to the diffusion matrix vanishes in the limit β → ∞ of deterministic decision
making.

5. The generating functional

5.1. Definition and discretization

Instead of working with the Kramers–Moyal expansion, it will be more convenient and safe
to return to the underlying master equation (17), which can be written as

d

dt
pt (q) = 2p

η̃

∫
dq̂ dq′

(2π)N
ei

∑
i q̂i (qi−q ′

i−θi )pt (q
′)

{
1

p

p∑
µ=1

〈
eiη̃

(
1√
N

∑
i q̂i ξ

µ

i

)
Aµ[q′,z]

〉
z

− 1

}
(25)

where we have introduced auxiliary driving forces θi(t) in order to identify response functions
later. At this stage we discretize our continuous time, t → �δ (� = 0, 1, 2, . . .) with intervals
0 < δ � 1 which can be sent to zero independent of the limit N → ∞ (since the procedure
of [18], as followed here, leads to a continuous-time master equation for any N ), so that
the probability density of finding a path of microscopic states {q(0), q(δ), q(2δ), . . .} can be
written as

Prob [q(0), q(δ), q(2δ), . . .] = p0(q(0))
∏
t>0

W̃t [q(t)|q(t − δ)] (26)

with

W̃t [q|q′] =
∫

dq̂

(2π)N
ei

∑
i q̂i (qi−q ′

i−θi (t))

{
2δ

η̃

∑
µ

〈
eiη̃[ 1√

N

∑
i q̂i ξ

µ

i ]Aµ[q′,z]〉
z

+

(
1 − 2pδ

η̃

)}
. (27)

The moment generating functional for our stochastic process is defined as

Z[ψ] = 〈
ei

∑
t

∑
i ψi (t)qi (t)

〉
=

∫ ∏
t

{
dq (t)W̃t [q(t + δ)|q(t)]} p0(q(0)) ei

∑
t

∑
i ψi (t)qi (t).

Derivation of the generating functional with respect to the conjugate variables ψ generates all
moments of q at arbitrary times. Upon introducing the two short-hands

w
µ
t =

√
2√
N

∑
i

q̂i (t)ξ
µ

i x
µ
t =

√
2√
N

∑
i

si(t)ξ
µ

i

with si(t) ≡ σ [qi(t), zi(t)], as well as Dq = ∏
it [dqi (t)/

√
2π ], Dw = ∏

µt [dw
µ
t /

√
2π ]

and Dx = ∏
µt [dx

µ
t /

√
2π ] (with similar definitions for Dq̂, Dŵ and Dx̂, respectively), the

2 Note that limβ→∞ MB
k� = 0, so that the {MA

k�} represent the fluctuations due to external information selection in
the absence of decision noise. For β < ∞, however, the above causal/interpretational separation is not perfect, since
the two sources of randomness will inevitably be intertwined.
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generating functional takes the following form:

Z[ψ] =
∫

DwDŵDxDx̂ ei
∑

tµ[ŵµ
t w

µ
t +x̂µ

t x
µ
t ]
∏
t

{
1 +

2δ

η̃

∑
µ

[
e

iη̃wµ
t√
2

[
�µ+

x
µ
t√
2

]
− 1

]}

×
∫

DqDq̂ p0(q(0))
〈
e− i

√
2√
N

∑
µi ξ

µ

i

∑
t [ŵ

µ
t q̂i (t)+x̂

µ
t si (t)]

〉
z

×ei
∑

t i[q̂i (t)(qi (t+δ)−qi (t)−θi (t))+ψi(t)qi (t)]. (28)

We note that, as δ → 0 (and using δ
∑

t = O(δ0)):

∏
t

{
1 +

2δ

η̃

∑
µ

[
e

iη̃wµ
t√
2

[
�µ+

x
µ
t√
2

]
− 1

]}
= e

∑
µ

∑
t

2δ
η̃

[
e

iη̃wµ
t√
2

[
�µ+

x
µ
t√
2

]
−1+O(δN)

]
.

Hence, if we choose δ � N−1 we obtain

Z[ψ] =
∫

DwDŵDxDx̂ e
∑

tµ

[
iŵµ

t w
µ
t +ix̂µ

t x
µ
t + 2δ

η̃

[
e

iη̃wµ
t

[
�µ+

x
µ
t√
2

]/√
2−1+o(N0)

]]

×
∫

DqDq̂ p0(q(0))
〈
e− i

√
2√
N

∑
µi ξ

µ

i

∑
t [ŵ

µ
t q̂i (t)+x̂

µ
t si (t)]

〉
z

×ei
∑

t i[q̂i (t)(qi (t+δ)−qi (t)−θi (t))+ψi(t)qi (t)]. (29)

5.2. Disorder average

At this stage we carry out the disorder averages, denoted as [· · ·]dis, which involve the variables
ξ
µ

i = 1
2 (R

µ

i1 − R
µ

i2) and �µ = 1
2N

− 1
2
∑

j (R
µ

j1 + R
µ

j2). For times which do not scale with N

and for simple initial conditions of the form p0(q) = ∏
i p0(qi) one finds

[Z[ψ]]dis =
∫

DwDŵDxDx̂ ei
∑

tµ[ŵµ
t w

µ
t +x̂µ

t x
µ
t ]

×
∫

DqDq̂
∏
i

p0(qi(0)) ei
∑

t i[q̂i (t)(qi (t+δ)−qi (t)−θi (t))+ψi(t)qi (t)]

×

〈∏

µ

e
2δ
η̃

∑
t

[
e

iη̃wµ
t

[
�µ+

x
µ
t√
2

]/√
2−1+o(N0)

]
− i

√
2√
N

∑
i ξi

∑
t [ŵ

µ
t q̂i (t)+x̂

µ
t si (t)]

〉
z




dis

. (30)

We concentrate on the term in (30) with the disorder averages. These are similar to but
generally more difficult than those calculated in [20] (to which they reduce only for η̃ → 0).
As in [20] they automatically generate the dynamic order parametersCtt ′ = N−1 ∑

i si(t)si(t
′),

Ktt ′ = N−1 ∑
i si(t)q̂i(t

′), and Ltt ′ = N−1 ∑
i q̂i (t)q̂i(t

′) and their conjugates

∏
µ

[. . .]dis =
∏
µ

{∫
d� d�̂

2π
e

i�̂�+ 2δ
η̃

∑
t

[
e

iη̃wµ
t

[
�+

x
µ
t√
2

]/√
2−1+o(N0)

]

×
∏
i

[
e− iRµ

i1√
2N

[
�̂/

√
2+

∑
t [ŵ

µ
t q̂i (t)+x̂

µ
t si (t)]

]
− iRµ

i2√
2N

[
�̂/

√
2−∑

t [ŵ
µ
t q̂i (t)+x̂

µ
t si (t)]

]]
dis

}

=
∏
µ

{∫
d� d�̂

2π
ei�̂�+ 2δ

η̃

∑
t

[
e

iη̃wµ
t

[
�+

x
µ
t√
2

]/√
2−1

]
+o(N0)

× e− 1
4N

∑
i

[(
�̂√

2
+
∑

t [ŵ
µ
t q̂i (t)+x̂

µ
t si (t)]

)2
+
(
�̂√

2
−∑

t [ŵ
µ
t q̂i (t)+x̂

µ
t si (t)]

)2]}



10792 A C C Coolen and J A F Heimel

=
∏
µ

{∫
d� d�̂

2π
ei�̂�− 1

4 �̂
2
+ 2δ

η̃

∑
t

[
e

iη̃wµ
t

[
�+

x
µ
t√
2

]/√
2−1

]
+o(N0)

× e− 1
2N

∑
i

[∑
t [ŵ

µ
t q̂i (t)+x̂

µ
t si (t)]

]2
}

=
∏
µ

{∫
d�√
π

e
−�2+ 2δ

η̃

∑
t

[
e

iη̃wµ
t

[
�+

x
µ
t√
2

]/√
2−1

]
+o(N0)

× e− 1
2

∑
t t ′
[
ŵ

µ
t Ltt ′ ŵ

µ

t ′ +2x̂µ
t Ktt ′ ŵ

µ

t ′ +x̂
µ
t Ctt ′ x̂

µ

t ′
]}

. (31)

Insertion into (30), followed by the isolation of the order parameters via δ-distributions (whose
integral representations generate the conjugate order parameters) then gives

[Z[ψ]]dis =
∫

[DCDĈ][DKDK̂][DLDL̂] eN[5+6+�+o(N0)]. (32)

The o(N0) term in the exponent is independent of the fields {ψi(t)} and {θi(t)}. Upon choosing
an appropriate scaling with δ of the conjugate integration variables (namely, (x̂, ŵ) → δ(x̂, ŵ)

and (Ĉ, K̂, L̂) → δ2(Ĉ, K̂, L̂), to guarantee the existence of a proper δ → 0 limit of the various
time summations), the three relevant exponents in (32) are given by the following expressions:

5 = iδ2
∑
t t ′

[Ĉtt ′Ctt ′ + K̂tt ′Ktt ′ + L̂tt ′Ltt ′ ] (33)

6 = α log

[ ∫
DwDŵDxDx̂ e− 1

2 δ
2 ∑

t t ′ [ŵtLtt ′ ŵt ′ +2x̂tKtt ′ ŵt ′ +x̂tCtt ′ x̂t ′ ]

×eiδ
∑

t [ŵtwt+x̂t xt ]
∫

Du e
2δ
η̃

∑
t

[
e

1
2 iη̃wt [u+xt ]−1

]]
(34)

� = 1

N

∑
i

log

〈 ∫
DqDq̂ p0(q(0)) e

iδ
∑

t

[
q̂(t)

(
q(t+δ)−q(t)

δ
−δ−1θi (t)

)
+δ−1ψi(t)q(t)

]

×e−iδ2 ∑
t t ′ [Ĉtt ′ s(t)s(t ′)+K̂tt ′ s(t)q̂(t ′)+L̂tt ′ q̂(t)q̂(t ′)]

〉
z

(35)

with the standard abbreviation of the Gaussian measure Du = (2π)−
1
2 e− 1

2 u
2

du.
The average 〈. . .〉z has now been reduced to a single site one: 〈g[z1, z2, . . .]〉z =∫∏

t [dzt P (zt )] g[z1, z2, . . .]. Following [20] we have also introduced the short-hands
Dq = ∏

t [dq (t)/
√

2π ], Dw = ∏
t [dwt/

√
2π ], Dx = ∏

t [dxt/
√

2π ] (with similar definitions
for Dq̂, Dŵ and Dx̂).

6. The saddle-point equations

6.1. Derivation of saddle-point equations

We can now evaluate (32) by saddle-point integration, in the limit N → ∞, and provided the
order parameter functions depend asymptotically on their two time arguments in a sufficiently
smooth (i.e. N -independent) way. We define Gtt ′ = −iKtt ′ . Taking derivatives with respect
to the generating fields and using the normalization [Z[0]]dis = 1 then gives (at the physical
saddle-point) the usual relations

Ctt ′ = lim
N→∞

1

N

∑
i

[〈si(t)si(t ′)〉]dis (36)
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Gtt ′ = lim
N→∞

1

N

∑
i

∂

∂θi(t ′)
[〈si(t)〉]dis (37)

Ltt ′ = 0. (38)

Putting ψi(t) = 0 (they are no longer needed) and θi(t) = δ · θ̃ (t) then simplifies (35) to

� = log
∫

Dq Dq̂ p0(q(0)) e−iδ2 ∑
t t ′ q̂(t)L̂tt ′ q̂(t ′)

×
〈
eiδ

∑
t q̂(t)

[
q(t+δ)−q(t)

δ
−θ̃ (t)−δ

∑
t ′ K̂t ′ t s(t ′)

]
−iδ2 ∑

t t ′ s(t)Ĉtt ′ s(t ′)
〉
z

(39)

in which now s(t) = σ [q(t), zt ]. Extremization of the extensive exponent 5 + 6 + � of (32)
with respect to {C, Ĉ,K, K̂, L, L̂} gives the remaining saddle-point equations

Ctt ′ = 〈s(t)s(t ′)〉; Gtt ′ = ∂〈s(t)〉;
δ∂θ̃(t ′)

(40)

Ĉtt ′ = i

δ2

∂6

∂Ctt ′
K̂tt ′ = i

δ2

∂6

∂Ktt ′
L̂tt ′ = i

δ2

∂6

∂Ltt ′
. (41)

The effective single-trader averages 〈. . .〉;, generated by taking derivatives of (35), are defined
as

〈f [{q, s}]〉; =
∫Dq 〈M[{q, s}]f [{q, s}]〉z∫Dq 〈M[{q, s}]〉z (42)

M[{q, s}] = p0(q(0)) e−iδ2 ∑
t t ′ s(t)Ĉtt ′ s(t ′)

∫
Dq̂ e−iδ2 ∑

t t ′ q̂(t)L̂tt ′ q̂(t ′)

× eiδ
∑

t q̂(t)

[
q(t+δ)−q(t)

δ
−θ̃ (t)−δ

∑
t ′ K̂t ′ t s(t ′)

]
. (43)

Upon elimination of the trio {Ĉ, K̂, L̂} via (41) we obtain exact closed equations for the
disorder-averaged correlation and response functions in the N → ∞ limit: equations (40),
with the effective single-trader measure (43).

6.2. Simplification of saddle-point equations

The introduction of on-line evolution and decision noise into the dynamics has affected the
terms 6 (34) and � (39), compared to the analysis in [20]. In order to proceed we now have
to work out the term 6 (34) further:

6 = α log
∫

DuDw Dx φ[{x,w}, u]

×
∫

Dŵ Dx̂ e− 1
2 δ

2 ∑
t t ′ [ŵtLtt ′ ŵt ′ +2x̂tKtt ′ ŵt ′ +x̂tCtt ′ x̂t ′ ]+iδ

∑
t [ŵtwt+x̂t xt ] (44)

where

φ[{x,w}, u] = exp

[
2δ

η̃

∑
t

[
e

1
2 iη̃wt [u+xt ] − 1

]]
. (45)

Upon expanding the ‘inner’ exponential in this expression in a power series, we can write φ

as an average of the form

φ[{x,w}, u] =
〈

exp

[
1
2 iη̃

∑
t

ntwt [u + xt ]

]〉
n

(46)

where 〈·〉n is defined as

〈f [n1, n2, . . .]〉n ≡
∑

n1,n2...�0

[∏
s

P2δ/η̃[ns] f [n1, n2, . . .]

]
(47)
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with the Poisson distribution Pa[�] = 1
�! e

−aa�. The first two moments of the distribution are
given by 〈nt 〉n = 2δ/η̃ and 〈n2

t 〉n = (2δ/η̃)2 + 2δ/η̃. We now insert (46) into (44), followed
by integration over u, {x}, {x̂} and {w} (in precisely that order). This gives, with K = iG,
with the diagonal matrix Ett ′ = 1

2 η̃nt δtt ′ , and with the matrix D whose entries are defined as
Dtt ′ = 1 + Ctt ′ :

6 = α log

〈
Det−

1
2 [EDE]

∫
Dŵ e− 1

2 δ
2 ∑

t t ′ ŵt [L+(1I+G†E)(EDE)−1(1I+EG)]t t ′ ŵt ′
〉
n

(48)

(modulo an irrelevant constant). Taking the derivative of 6 with respect to the matrix elements
{Ltt ′ , Ctt ′ ,Gtt ′ }, followed by setting L → 0, gives (using the causality property Gtt ′ = 0 for
t � t ′, which guarantees that Det(1I + EG) = 1):

lim
L→0

∂6

∂Ltt ′
= −1

2
α〈[(1I + EG)−1EDE(1I + G†E)−1]t t ′ 〉n (49)

lim
L→0

∂6

∂Ctt ′
= 0 (50)

lim
L→0

∂6

∂Gtt ′
=−α〈[(1I + EG)−1E]t ′t 〉n. (51)

According to (41) this gives for the conjugate order parameters

L̂tt ′ = − 1
2 iα>tt ′ (52)

Ĉtt ′ = 0 (53)

K̂tt ′ = −αRt ′t (54)

with

> = 1

δ2
〈(1I + EG)−1EDE(1I + G†E)−1〉n (55)

R = 1

δ2
〈(1I + EG)−1E〉n. (56)

6.3. Evaluation of poisson averages

Finally, it turns out that in these latter two matrices (55), (56) the averages over the {nt } can
be performed exactly, by using causality. We first deal with (56) (which is simpler):

Rtt ′ = 1

δ2

∑
��0

(−1)�〈[(EG)�E]t t ′ 〉n.

We note that each of the terms in the expansion gives factorized averages due to Gss ′ = 0 for
s � s ′ (using only that 〈ns〉n = 2δ/η̃ for any s):

〈[(EG)�E]t t ′ 〉n = ( 1
2 η̃)

�+1
∑

s1,...,s�−1

〈ntGts1ns1Gs1s2ns2Gs2s3 . . . ns�−1Gs�−1t ′nt ′ 〉n

= ( 1
2 η̃)

�+1
∑

t>s1>···>s�−1>t ′
Gts1Gs1s2 . . . Gs�−1t ′ 〈ntns1 . . . ns�−1nt ′ 〉n

= δ�+1G�
tt ′

giving the simple result

R = 1

δ
[1I + δG]−1. (57)

We note that in calculating (57) knowledge of only the first moment of the {nt } distribution
was required.
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Next we turn to the noise covariance matrix

>tt ′ = 1

δ2

∑
��′�0

(−1)�+�′ 〈[(EG)�EDE(G†E)�
′
]t t ′ 〉n. (58)

Now, again due to causality, only averages of terms with at most two n-variables with the same
time index can occur. We have to take into account the extra contributions coming from all
possible time pairings. Using 〈n2

s 〉 = 〈ns〉2[1 + η̃/2δ] we derive

〈[(EG)�EDE(G†E)�
′
]s0s

′
0
〉n =

∑
s�s

′
�

Ds�s
′
�
〈[(EG)�E]s0s� [(EG)�

′
E]s ′

0s
′
�
〉n

= ( 1
2 η̃)

�+�′+2
∑

s0>···>s�

∑
s ′

0>···>s ′
�

Ds�s
′
�
Gs0s1 . . . Gs�−1s� Gs ′

0s
′
1
. . . Gs ′

�′−1
s ′
�

×〈ns0 . . . ns�ns ′
0
. . . ns ′

�
〉n

= δ�+�′+2
∑

s0>···>s�

∑
s ′

0>···>s ′
�

Ds�s
′
�

[
1 +

η̃

2δ

]∑�
i=0

∑�′
j=0 δsi s

′
j

× Gs0s1 . . . Gs�−1s� Gs ′
0s

′
1
. . . Gs ′

�′−1
s ′
�

= δ�+�′+2
∑

s0>···>s�

∑
s ′

0>···>s ′
�

Ds�s
′
�

�∏
i=0

�′∏
j=0

[
1 + δsi s ′

j

η̃

2δ

]

× Gs0s1 . . . Gs�−1s� Gs ′
0s

′
1
. . . Gs ′

�′−1
s ′
�

(59)

where the factor
∑�

i=0

∑�′
j=0 δsi s ′

j
counts the number of pairings occurring in the two types of

time arguments (i.e. those with primes, and those without). We note that to find expression (59)
knowledge of only the first two moments of the {nt }-distribution was required.

7. The effective single-agent process

7.1. Discretized single-agent process

Upon inserting the results (52)–(54) we now find our effective single-trader measure M[{q, s}]
of (43) reducing further to the following expression (modulo a constant pre-factor reflecting
normalization, which is independent of the decision noise variables {z(t)}):

M[{q, s}] = p0(q(0))
∫

Dη e− 1
2

∑
t t ′ η(t)>

−1
t t ′ η(t

′)

×
∏
t

δ

[
q(t + δ) − q(t)

δ
− θ̃ (t) + αδ

∑
t ′

Rtt ′s(t
′) − √

αη(t)

]
(60)

with Rtt ′ = δ−1[1I + δG]−1
t t ′ (57). This describes a single-agent process of the form

q(t + δ) − q(t)

δ
= θ̃ (t) − αδ

∑
t ′

Rtt ′σ [q(t ′), z(t ′)] +
√
αη(t). (61)

Causality ensures that Rtt ′ = 0 for t ′ > t . The variable zt represents the original single-
trader decision noise, with 〈z(t)〉z = 0 and 〈z(t)z(t ′)〉z = δtt ′ , and η(t) is a disorder-generated
Gaussian noise with zero mean and with temporal correlations given by (58), (59).
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7.2. Continuous time limit

We can now take the limit δ → 0 and restore continuous time. The bookkeeping of δ-terms
is found to come out right, with partial derivatives with respect to the perturbation fields
converting into functional derivatives, with time summations converting into integrals, and
with matrices converting into integral operators (with the usual convention 1

δ
1It t ′ → δ[t − t ′]).

Upon making the ansatz that our order parameters are smooth functions of time, we then lose
the remaining microscopic variables {z(t)} in the retarded self-interaction term (which are
automatically converted into averages over their distribution) and end up with the effective
single-trader problem

d

dt
q(t) = θ̃ (t) − α

∫ t

0
dt ′ R(t, t ′)〈σ [q(t ′), z]〉z +

√
αη(t). (62)

The correlation- and response functions (36), (37) are the dynamic order parameters of the
problem, and must now be solved self-consistently from the following closed equations:

C(t, t ′) = 〈〈σ [q(t), z]〉z 〈σ [q(t ′), z]〉z
〉
;

(63)

G(t, t ′) = δ

δθ̃(t ′)
〈〈σ [q(t), z]〉z 〉; (64)

(for t �= t ′). The brackets 〈. . .〉; now refer to the stochastic process (62) (which no longer
involves the {z(t)}, only their distribution). Note that the correlation and response functions
are generally discontinuous at t = t ′, namely C(t, t) = 1 and G(t, t) = 0 (in our derivation
we have used the Itô convention). For additive noise with P(z) = 1

2K[1 − tanh2(Kz)] (as in
e.g. [6, 11], with K such that

∫
dz P (z)z2 = 1), for instance, one has 〈σ [q, z]〉z = tanh [βq]

with inverse ‘temperature’ β ≡ K/T . While for multiplicative noise one finds 〈σ [q, z]〉z =
λ(T )sgn (q) with λ(T ) = ∫

dz P (z)sgn [1 + T z].
What remains is to take the continuous time limit in our expressions for the effective noise

covariance and the retarded self-interaction kernel. The latter, defined by (57), simply becomes

R(t, t ′) = lim
δ→0

1

δ
[1I + δG]−1

t t ′

= δ(t − t ′) +
∑
�>0

(−1)�G�(t, t ′) (65)

with the usual definition for multiplication of the continuous time kernels G�+1(t, t ′) =∫
dt ′′ G�(t, t ′′)G(t ′′, t ′). The continuous time limit of the noise covariance kernel (58) becomes

>(s0, s
′
0) =

∑
��′�0

(−1)�+�′
lim
δ→0

δ�+�′ ∑
s0>···>s��0

∑
s ′

0>···>s ′
��0

�∏
i=0

�′∏
j=0

[
1 + δsi s ′

j

η̃

2δ

]

×[1 + C(s�, s
′
�)]G(s0, s1) . . . G(s�−1, s�)G(s ′

0, s
′
1) . . . G(s ′

�′−1, s
′
�)

=
∑
��′�0

(−1)�+�′
∫ ∞

0
ds1 . . . ds� ds ′

1 . . . ds ′
�

�∏
i=0

�′∏
j=0

[
1 + 1

2 η̃δ(si − s ′
j )
]

×[1 + C(s�, s
′
�)]G(s0, s1) . . . G(s�−1, s�)G(s ′

0, s
′
1) . . . G(s ′

�′−1, s
′
�). (66)

8. Stationary state in the ergodic regime

In this section we study the long-time limit of the effective single-agent process (62) in the
regime where the following three conditions are met: time translation invariance, i.e.

lim
t→∞ C(t + τ, t) = C(τ) lim

t→∞ G(t + τ, t) = G(τ) (67)
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a finite integrated response (or static susceptibility), i.e.

lim
t→∞

∫
dt ′ G(t, t ′) = χ < ∞ (68)

and weak long-term memory [22], i.e.

lim
t→∞

∫ tw

0
dt ′ G(t, t ′) = 0 for any fixed tw. (69)

Together these three conditions ensure that also the retarded self-interaction R and the noise
covariance matrix > will become time translation invariant: limt→∞ R(t + τ, t) = R(τ) and
limt→∞ >(t + τ, t) = >(τ). We introduce the following notation for long-time averages:
f = limτ→∞ τ−1

∫ τ

0 dt f (t). Upon assuming the above three conditions to hold, we can
calculate the long-time average for the single-agent process (62), giving

dq/dt = θ − α

1 + χ
〈σ 〉z +

√
α η. (70)

It has been noted and exploited earlier (in e.g. [10] and [20]) that agents can be divided into
two categories: frozen agents who get completely fixed on one specific strategy, and fickle
agents who always continue to alternate their strategies. The first type of agent will have a
non-zero average preference velocity, dq/dt �= 0, while for the agents in the latter group one
has dq/dt = 0. For fickle agents it follows from equation (70) that 〈σ 〉z = (1+χ)(θ+

√
αη)/α.

This implies that a necessary condition for an agent to be fickle is

fickle agents: |θ +
√
αη| � α

1 + χ
|〈σ [±∞, z]〉z| ≡ γ. (71)

Note that |〈σ [±∞, z]〉z| = λ(T ) for multiplicative noise, and that |〈σ [±∞, z]〉z| = 1 for
additive noise. With the conventions λ = λ(T ) for multiplicative noise and λ = 1 for additive
noise, we cover both cases by writing γ = λα/(1 + χ). If an agent is frozen, the preference
velocity dq/dt must have the same sign as q(t), and thus also the same sign as 〈σ 〉z. This
implies

frozen agents : |θ +
√
αη| � α

1 + χ
|〈σ 〉z| = γ. (72)

Since the two conditions (71), (72) are complementary, they are are not only necessary but
also sufficient for characterizing agents as either fickle (71) or frozen (72). The asymptotic
behaviour of the agent is thus completely determined by the persistent noise η, which is a
Gaussian random variable with zero mean and a variance given by

〈η2〉; = lim
t→∞

1

t

∫ t

0
dt ′ >(t ′) = 1 + c

(1 + χ)2
(73)

in which we find the persistent auto-correlation c = limτ→∞ τ−1
∫ τ

0 dt C(t). The latter
observable can be expressed in terms of the integrated response χ , the market’s control
parameter α, and the fraction of frozen agents φ. To do this we first separate the expression for
c into frozen and fickle contributions, by using the conditions (71), (72) (we may set θ = 0):

c = 〈〈σ 〉z2
C(|√αη| − γ )

〉
;

+
〈〈σ 〉z2

C(γ − |√αη|)〉
;

= λ2
〈
C(|√αη| − γ )

〉
;

+

(
1 + χ√

α

)2 〈
η2C(γ − |√αη|)〉

;
(74)

where C denotes the step-function. Only Gaussian integrals remain (defining the distribution
of η). To compactify the final result it is convenient to introduce

y = λ
√
α√

2(1 + c)
. (75)
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The fraction of frozen agents φ and the persistent correlation c can now be written as

φ = 1 − erf (y) (76)

c = λ2

(
φ(y) +

2

y2

∫ y

0

dx√
π

x2e−x2

)
. (77)

Under the conditions (67)–(69) we can calculate the static susceptibility without knowing
the non-persistent parts of the response- and correlation functions. The reason for this is
that, asymptotically, the frozen agents will not change their preferences when subjected to an
infinitesimal external perturbation field, whereas the fickle agents will react linearly to such a
field. In formulae

χ = lim
t→∞

∫ t

0
dt ′

δ

δθ̃(t ′)
〈〈σ [q(t), z]〉z〉; = ∂

∂θ

〈〈σ 〉z
〉
;
= 1

α
(1 − φ)(1 + χ).

Or, equivalently

χ = 1 − φ

α − (1 − φ)
. (78)

The equations (75), (77) and (78) completely specify the stationary behaviour of the system.
They are exact for the on-line MG. We will not give a detailed exposition of the behaviour of
the solutions of the equations here, because they have been presented and discussed at length
in earlier papers. The interested reader is referred to [12] and [20] in particular.

However, it is appropriate at this point to discuss the status of our assumptions (67)–(69).
Equation (78) tells us that χ is positive and finite for α > 1 − φ, and will diverge at
α = 1 − φ. Numerical solution of (75), (77), (78) shows that this happens at α = αc(T ),
where αc(0) ≈ 0.3374, and αc(T ) tends to 0 as T → ∞ (see [21] for the phase diagram in the
(α, T ) plane). For α > αc(T ) simulations and theory are found to be in perfect agreement,
and there is no evidence that the assumptions (67)–(69) do not hold. Below αc(T ), however,
the system’s behaviour is known to depend strongly on initial conditions [15, 17, 20]. This
indicates that most likely not only condition (68) (finite integrated response) ceases to hold, but
also (69) (weak long-term memory). These two conditions may seem very similar; however,
work in progress on a version of the MG where agents try to correct for their own impact on
the market [23] indicates that it is possible to have a long-term memory and a finite integrated
response [24]. For the original MG as presented here we have found no evidence that this
can happen. Hence, equations (77) and (78) can for α > αc(T ) be regarded as an exact and
complete description of the persistent order parameters of the MG.

9. The volatility

9.1. Definitions and exact relations

An important measure of the efficiency of a market is the average mismatch of buyers and
sellers. In the case of the MG this is given by the magnitude of the total bid A(�). Since in the
present model the long-term average A = limL→∞ 1

L

∑
��L A(�) vanishes, the appropriate

measure here is the volatility σ , which measures the size of the fluctuations of A (see
equation (8)) in the stationary state

σ 2 = lim
L→∞

1

L

L∑
�=1

A(�)2 = lim
L→∞

1

L

L∑
�=1

{Aµ(�)[q(�), z(�)]}2. (79)

If the limit L → ∞ is taken before the thermodynamic limit N → ∞, then the volatility will
be self-averaging with respect to the realization of the presentation of the patterns {µ(�)}, with
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respect to the realization of the decision noise {z(�)}, and with respect to the realization of the
quenched disorder variables Ω and ξ. Hence, in the thermodynamic limit, the average volatility
(over the above sources of randomness) will be identical to the single sample volatility. In
the continuous-time version of the process, i.e. after the introduction of Poisson-distributed
iteration durations, one may write

σ 2 = lim
τ→∞

1

τ

∫ τ

0
dt

[
1

p

∑
µ

〈〈Aµ[q(t), z(t)]2〉z
〉]

dis

. (80)

Here the average without subscripts refers to the full stochastic process (including both the
randomness in the selection of the external information as well as that induced by the decision
noise). The approach followed in this paper in fact allows us to study a more general object
than the volatility

E(t, t ′) = 1

p

∑
µ

[〈〈Aµ[q(t), z(t)]Aµ[q(t ′), z(t ′)]〉z
〉]

dis . (81)

From (81) the volatility follows as

σ 2 = lim
τ→∞

1

τ

∫ τ

0
dt E(t, t). (82)

In contrast to (80), the quantity (81) also describes transient bid fluctuations and their
correlations. The quantity (81) is calculated via a simple adaptation of the corresponding
calculation in [20] (to which we refer for full details). One introduces the observables
A

µ
t = �µ + x

µ
t /

√
2 explicitly into the calculation of the generating functional using a delta

function (written in integral form, which generates the conjugate variables Â
µ
t ), similar to

the introduction of x
µ
t and w

µ
t . After having done the integral over �µ one then finds

A
µ
t = (u + xt )/

√
2. If we apply this modification to equations (44), (46), and perform

the Gaussian integrals over u, x, x̂, w, ŵ and Â (in this order) we are left with (modulo an
irrelevant constant):

6 = 1

N

∑
µ

log

〈 ∫
DAµ exp

[
−

∑
t t ′

A
µ
t

[
(1I + GE)†D−1(1I + GE)

]
t t ′A

µ

t ′

]〉
n

.

From this it follows that the covariance matrix (80) is half the inverse of the matrix appearing
in the above exponential between A

µ
t and A

µ

t ′ :

Ett ′ = 1
2

〈
[(1I + GE)−1D(1I + EG†)−1]t t ′

〉
n
. (83)

In this expression one can carry out explicitly the average over the variables {nt }, similar to
the calculation of the noise covariance matrix (66) (to which (81) is found to be similar but,
in contrast to the batch cases studied in [20,21], not proportional). Upon subsequently taking
the continuous time limit δ → 0 this leads to an exact expression for the generalized volatility
matrix (81), at any combination of times (t, t ′), in terms of our dynamical order parameters
C(t, t ′) and G(t, t ′).

9.2. Expression for the volatility in terms of persistent order parameters

Since in practice it is very difficult to solve the order parameter equations (63), (64) for finite
temporal separations, it would be helpful to find an expression for (83) (and hence also the
volatility) which involves persistent order parameters only. In the remainder of this section
we discuss procedures to achieve this in the ergodic regime α > αc(T ). First we turn to the
long-time correlation in bids. If t and t ′ are sufficiently separated and conditions (67)–(69)
hold (so that G decays effectively on finite time-scales), the Poisson average in (83) factorizes
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over the two E matrices, so that in the continuous time limit the long-term bid correlations
reduce to

E(∞) = lim
τ→∞ lim

t→∞ E(t + τ, t)

= lim
δ→0

lim
τ→∞ lim

t→∞
1
2

[
(1I + δG)−1D(1I + δG†)−1

]
t+τ,t

= 1

2

1 + c

(1 + χ)2
. (84)

This result is exact. For the volatility itself, which in view of (67)–(69) can be written
as σ 2 = limt→∞ E(t, t), and which depends on the detailed short-time structure of the
kernels G and D, one has to resort to approximations. One such approximation is motivated
by a property of mean-field disordered systems with detailed balance, where fluctuation-
dissipation theorems (FDT) allow one to gauge away the non-persistent parts of the response
and correlation function while leaving averages containing a single time index and averages
containing infinitely separated times unchanged (see e.g. [26]); for equilibrium systems the
resulting simpler equations are exact. Although no general analogons of equilibrium FDTs are
as yet known for non-equilibrium systems such as the MG, one could assume that the resulting
recipe for removing non-persistent contributions to the various kernels also applies to non-
equilibrium systems; this as yet ad hoc assumption has recently been applied with remarkable
success to a similar non-equilibrium problem [25]. Here it would amount to removing all
non-persistent parts of the various kernels, while retaining the relations δ

∑
t Gtt ′ = χ ,

1
τ

∑
t�τ Ct,t ′ = c and Ctt = 1, i.e. one inserts

Ct,t ′ = c + (1 − c)δtt ′ Gt,t ′ = χγ (1 − γ δ)t−t ′−1 (t > t ′) (85)

and takes γ → 0 at the end of the calculation. The only expressions containing G which will
survive this limit, are those where each instance of G is summed over the whole history. More
specifically, in the volatility

σ 2 = 1
2

∑
��0

∑
�′�0

〈
[(GE)�D(EG†)�

′
](0)

〉
n

(86)

contractions like δ
∑

s GtsGt ′s cannot survive, as they are of order γ . Hence the Poisson
average in (86) factorizes over the E matrices, and the only non-vanishing term involving the
diagonal part of D is the term � = �′ = 0. The result3 is

σ 2 ≈ 1

2

1 + c

(1 + χ)2
+

1

2
(1 − c). (87)

This expression for the volatility depends only on persistent order parameters, and is
independent of the learning rate η̃. Work is in progress to explore and understand the theoretical
basis, if it exists, of (or disprove the correctness of, as the case may be) the elimination of the
non-persistent parts in general mean-field disordered systems without detailed balance, which
underlies the derivation of (87) from the exact expression (86) in the ergodic regime.

10. Relation between present exact solution and previous work

The present study improves upon and generalizes previous work on the on-line MG in several
ways: it is exact for N → ∞, it is a dynamical theory (with statics included as a spin-
off), and it deals with a large family of decision noise definitions (including additive and
multiplicative noise, and intermediates). In this section we compare the various approximations
and assumptions made in previous studies with the exact solution, and also compare the solution
of the on-line MG with that of the batch MG.
3 Note: in the batch case [20, 21] one finds a slightly different expression.
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10.1. Expressions for the diffusion matrix

The first study in which one finds an expression for the diffusion matrix of the microscopic
on-line process is [15] (concerned with both additive and multiplicative noise). Comparison
with the exact expressions (23), (24) shows that the matrix given in [15] can be regarded
as an approximation obtained by disregarding fluctuations due to the selection of external
information, and retaining only those generated by the decision noise. Note that, similar
to (24), it contains the factors (1 − tanh2[βqi]) and vanishes as β → ∞. The
diffusion term presented more recently (for additive noise) in [17] can also be seen
as an approximation of (23), (24), obtained upon replacing

∑
µ ξ

µ

k ξ
µ

� 〈Aµ[q, z]2〉z by

limτ→∞ τ−1 ∑
t�τ

∑
µ ξ

µ

k ξ
µ

�
1
p

∑
ν〈Aν[q(t), z]2〉z , i.e. by neglecting certain correlations and

subsequently introducing an additional temporal average over q.
Note that neither of the two studies [15, 17] attempt to solve the dynamics; the objective

of [15] was to highlight the presence and role of the diffusion term in the microscopic equations
(since at the time the microscopic laws were claimed to be effectively deterministic [11]). The
authors of [17] have to restrict themselves to statics, since in their approximation and subsequent
analysis they neglect the time dependence of the fluctuation term which they replace by the
volatility (or, equivalently, they do not regard their volatility as time dependent). However,
their approach does shed additional light on the nature of the phase transition at α = αc(T )

and the system state for α < αc(T ).

10.2. The impact of truncating the Kramers–Moyal expansion

Initially, in [11], the KM expansion was truncated after the Liouville term, leading to
deterministic microscopic laws. In [15, 17] it was truncated after the Fokker–Planck term.
The question we turn to now is: what is the effect of such truncations, assuming one would
have taken the correct diffusion matrix (i.e. both terms (23) and (24))? This question is even
more relevant in view of the fact that, for additive noise, the exact equations (75), (77), (78),
which give the stationary solution in the ergodic regime, are identical to those found earlier
in [11].

If we trace back our derivations, we find that the effect of truncating the KM expansion
after the deterministic term or after the Fokker–Planck term is to replace the function φ in (46)
by

φDet[{x,w}, u] = eδ
∑

t iwt (u+xt ) (88)

or by

φFP [{x,w}, u] = eδ
∑

t iwt (u+xt )− 1
4 η̃δ

∑
t w

2
t (u+xt )

2
(89)

respectively. It turns out that both expressions can be written in the form (46), i.e.

φ[{x,w}, u] = 〈
e

1
2 iη̃

∑
t ntwt [u+xt ]

〉
n

(90)

〈f [n1, n2, . . .]〉n =
∑

n1,n2...�0

[∏
s

P2δ/η̃[ns] f [n1, n2, . . .]

]
(91)

but with alternative definitions for the statistics of the random variables {nt }:
Deterministic: Pa[n] = δ[n − a] (92)

Fokker–Planck: Pa[n] = e− 1
2 (n−a)2/a

√
2πa

. (93)

Both truncations can thus be seen as approximations of the true (Poisson) distribution which
describes the noise due to random information selection: in the deterministic case one replaces



10802 A C C Coolen and J A F Heimel

the true P2δ/η̃[n] by a delta-distribution with the correct first moment 〈n〉 = 2δ/η̃, in the
Fokker–Planck case one replaces the true P2δ/η̃[n] by a Gaussian distribution and ensures
that the first two moments 〈n〉 = 2δ/η̃ and 〈n2〉 = (2δ/η̃)2 + 2δ/η̃ are correct. The above
representation allows us to continue with our original derivation, in spite of the truncations,
right up to and including the equations describing the effective single-trader process (62)–(64),
since the choice made for Pa[n] only affects the kernels R(t, t ′) and >(t, t ′). The derivation
of expression (65), however, only involved the first moment of Pa[n] (see section 6), so both
truncations would have led to the exact expression for R(t, t ′). Surprisingly, the derivation
of (66) only involved the first two moments of Pa[n], so whereas the deterministic truncation
would have led to an incorrect expression for the covariance matrix>(t, t ′) (obtained by putting
η̃ → 0 in (66)), the Fokker–Planck approximation would have led to the correct expression (66)
and hence to the exact dynamical order parameter equations.

This explains why such truncations, although not a priori justified, here can lead to
correct results. The deterministic theory would lead at most to correct equations in ergodic
stationary states (where the learning rate of (66) drops out), but would fail to describe dynamical
properties. The Fokker–Planck truncation would lead to the correct macroscopic dynamical
theory, provided one uses the correct diffusion matrix, because the relevant order parameters
of the present model fortunately turn out not to be sensitive to the (weak) non-Gaussian
fluctuations.

10.3. Approximations of the volatility

Since the volatility (79) involves non-persistent order parameters (describing correlations over
short temporal separations, even in the stationary state), it could not be calculated directly in
any of the previous studies. Instead one had to resort to approximations.

We repeat an argument here which was first given in [10], and which applies in the ergodic
α > αc(T ) regime. Upon assuming that phase space is sampled ergodically by the process,
one may replace the time and pattern presentation averages by an average over the equilibrium
probability measure

σ 2 =
[〈

1

p

∑
µ

〈Aµ[q, z]2〉z
〉]

dis

. (94)

The decision noise average factorizes over sites, i.e. 〈σ [qi, zi]σ [qj , zj ]〉z =
〈σ [qi, zi]〉z〈σ [qj , zj ]〉z for i �= j (this is not an approximation). It was subsequently ar-
gued that in ergodic states the mean field character of the system means that also the ensemble
average factorizes over sites, i.e. 〈σ [qi, zi]σ [qj , zj ]〉 = 〈σ [qi, zi]〉〈σ [qj , zj ]〉 for i �= j . This
should be regarded as an approximation, since, although for large N non-diagonal correlations
can be assumed weak, they are also N in number and therefore cannot simply be discarded.
The result of this mean field approximation is

σ 2 ≈ 1

p

∑
µ

[〈〈Aµ〉z〉2
]

dis +
1

p

∑
µ

1

N

∑
i

[
ξ
µ

i ξ
µ

i

{
1 − 〈〈σ [qi, z]〉z〉2

}]
dis

= 1

p

∑
µ

[〈〈Aµ〉z〉2
]

dis +
1

2

[
1 − 1

N

∑
i

〈〈σ [qi, z]〉z〉2

]
dis

+ O(N−1/2) (95)

which then leads, in the ergodic regime and for additive decision noise, more or less directly
to

σ 2 ≈ 1

2

1 + c

(1 + χ)2
+

1

2
(1 − c) (96)
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which is equation (87). This identification shows that the exactness or otherwise of the
(traditional) approximation (96) is crucially linked to the question of under which conditions
non-persistent parts of dynamic order parameters can be ‘transformed away’ in ergodic non-
equilibrium models (see section 9). It also emphasizes that such approximations must fail in
the α < αc(T ) regime, since in equilibrium systems such procedures are based on FDT and
therefore typically reproduce the replica-symmetric solution.

Numerical evidence presented in [11, 12] shows that (96) is a very good approximation
in the α > αc(T ) region, until just above the transition point αc(T ). It is not clear whether
the slight discrepancy just above αc(T ) is due to insufficient equilibration in the simulation,
or because the approximation breaks down.

10.4. Relation with the dynamical solution of the batch MG

Finally, comparison shows that the present dynamical solution (62)–(64) for the on-line MG
can be regarded as a straightforward continuous-time equivalent of the discrete-time dynamical
solution of the batch MG [20,21], obtained simply by substituting time derivatives for discrete
differences and integral kernels for matrices, for any type of decision noise. The only real
difference is in the occurrence of the learning rate η̃ in (66) (which makes sense, since it
reflects fluctuations relating to the random choice of external information, which are absent by
definition in the batch models), which will be responsible for differences between batch and
on-line MG models in the transients and in the non-ergodic region. This learning rate term,
however, does not affect the stationary state solution for α > αc(T ), which explains why the
stationary state of the batch models [20,21] and the locationsαc(T ) of their ergodicity-breaking
transitions were identical to those found earlier (by others) for the on-line MG.

11. Discussion

In this paper we have solved the dynamics of the on-line MG, with general types of decision
noise (including additive and multiplicative decision noise as specific choices). We have
done so by following the successful approach which also recently led to the exact solution of
discrete-time batch versions of the MG [20, 21] (i.e. the application of generating functional
techniques a la De Dominicis [19]), and we have dealt with the problems relating to temporal
regularization, which occur only in on-line MGs, using the (exact) procedure of [18]. The
end result is a macroscopic dynamical theory in the form of closed equations for correlation-
and response functions (the dynamical order parameters of the problem) which are defined via
an effective continuous-time single-trader process. These equations are exact for N → ∞
(where N denotes the number traders), and they incorporate all static and dynamic properties
of the on-line MG, both in the ergodic and in the non-ergodic regimes.

We have used our theory to resolve a number of open problems related to approximations
and assumptions made in previous studies. For instance, we show why it is in principle not
allowed to truncate the Kramers–Moyal expansion of the microscopic process after the Fokker–
Planck term (let alone after the flow term), but why upon doing so one can for the present version
of the MG still find the correct macroscopic equations, we confirm that the different diffusion
matrices for the Fokker–Planck term in the process as proposed earlier by others are incomplete
or approximate, and we indicate how previously proposed approximations involving the market
volatility can be traced back to assumptions relating to ergodicity.

The macroscopic theory now available is not only exact, but also more comprehensive than
its on-line predecessors: it deals with the full dynamics (with statics included as a by-product),
and it generalizes the class of decision noise definitions. We also hope that our theory will
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end the discussions about which are the correct microscopic equations for the MG, and that it
can be used in future as the canonical starting point for both analyses and generalizations (e.g.
dynamics in the non-ergodic regime, or using the real market history as external information
as originally proposed in [1]), and for approximations (for which there is still a need, since it
is generally a non-trivial task to solve our macroscopic laws). This might well include some
of the approximations which have already been proposed earlier, which can now be provided
with transparent interpretations and with a guide for systematic improvement.
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